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Abstract. Machine Learning (ML)-enabled systems like Autonomous
Driving Systems (ADSs) face challenges meeting safety and performance
requirements in diverse environments, especially in resource-constrained,
latency-sensitive edge-cloud settings. These challenges often arise from
ML models’ limitations, including poor generalization to unseen condi-
tions. Adaptive algorithms using ML system switching have been pro-
posed, but existing approaches frequently lack generalizability, support
for common black-box systems, and effective use of distributed edge-
cloud resources. This paper presents a novel adaptive ML-enabled Edge-
Cloud system framework to address these shortcomings. Our framework
combines cloud-based pre-runtime analysis, which leverages simulation
for behavioral understanding and scenario-to-system mapping, with col-
laborative edge-cloud runtime adaptation featuring dynamic ML model
switching. It supports black-box systems and aims to balance safety and
efficiency by utilizing appropriate edge and cloud resources situation-
ally. Preliminary CARLA-based evaluation of the edge runtime compo-
nent suggests our framework can potentially improve the safety-efficiency
trade-off compared to single-model ADSs in some scenarios. This work
offers insights for designing adaptive edge-cloud systems and identifies fu-
ture directions, including robust cloud analysis and effective edge-cloud
collaboration. Findings suggest this edge-cloud approach can advance
the feasibility and reliability of adaptive ML systems for real-world au-
tonomous applications.

Keywords: ML-Enabled Systems · Autonomous Driving Systems · Edge-
Cloud Computing · Adaptive Systems · Simulation-Based Testing

1 Introduction

Autonomous systems, particularly Autonomous Driving Systems (ADSs), are in-
creasingly integrated within the broader edge-cloud computing ecosystem. Mod-
ern ADSs generate substantial sensor data at the edge, selectively offload data
to the cloud for large-scale analysis and model refinement, and receive updated
models back at the edge. This collaborative edge-cloud architecture aims for
safer roads, reduced congestion, and more efficient mobility services [14].
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ADSs rely on machine learning (ML) components for perception, decision-
making, and control tasks. However, these ML components face challenges due
to the unpredictable nature of real-world scenarios—including diverse traffic pat-
terns, unexpected behaviors, and varying environmental conditions [17, 16]. En-
suring reliable performance, especially under edge constraints (resource limits,
latency requirements), remains an open challenge.

Frameworks like Autoware [11] and Apollo [1] use modular designs with inde-
pendently optimized components. Despite such architectures, achieving consis-
tent safety and efficiency across diverse driving scenarios with a fixed set of ML
models is difficult. ML models risk being too large for practical computational
budgets or too small and overfitting specific scenarios [9]. Static ML systems,
therefore, often struggle with adaptability, particularly when facing scenarios un-
seen during training, highlighting the need for dynamic solutions in edge-cloud
environments.

Adaptive approaches using runtime ML system switching have been proposed
to mitigate these challenges [13, 6]. However, most existing approaches assume
white-box accessibility, requiring predictable model behaviors and limiting prac-
tical applicability. This limits practical applicability because many state-of-the-
art ML models used in ADSs, particularly deep neural networks, function as
complex black boxes, making their internal states difficult to predict or ana-
lyze directly for adaptation purposes. Moreover, these methods often don’t fully
leverage both cloud computational strengths and edge real-time capabilities si-
multaneously. Thus, frameworks that seamlessly integrate edge-cloud collabora-
tion for effectively handling black-box ML systems under varying conditions are
critically needed.

To address the limitations of static models in diverse/unseen scenarios and
the applicability constraints of existing white-box adaptive approaches, partic-
ularly concerning black-box systems and effective edge-cloud collaboration, we
present an adaptive ML-enabled edge-cloud system framework designed to over-
come these limitations. Our approach combines a cloud-driven pre-runtime phase
(leveraging extensive simulations for behavioral analysis and scenario mapping)
with a collaborative runtime phase where edge and cloud systems jointly identify
scenarios and dynamically select optimal ML systems. This two-phase strategy
maximizes cloud resources for exhaustive pre-runtime analyses and edge speed
for real-time adaptability. Our prototype implementation using the CARLA sim-
ulation platform [7] integrates both a high-performance deep-learning agent and
a computationally efficient rule-based agent, showing promising preliminary re-
sults regarding safety-efficiency trade-offs.

The main contributions of this study are:

– Edge-cloud adaptive framework: Formalized an edge-cloud adaptive
framework supporting black-box ML systems, defining cloud roles (pre-runtime
analysis) and edge-cloud collaboration roles (runtime adaptation).

– Empirical validation: Quantified safety-efficiency trade-offs of adaptive
ML switching via preliminary CARLA-based validation.
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– Insights and future research directions: Provided insights and future
directions for scenario generation, knowledge base maintenance, and deploy-
ment in practical edge-cloud environments.

The remainder of this paper is structured as follows: Section 2 reviews rele-
vant literature. Section 3 introduces our proposed adaptive framework. Section 4
describes the experimental setup and presents preliminary results. Section 5 dis-
cusses implications, limitations, and future research. Finally, Section 6 summa-
rizes our findings.

2 Related Work

The adaptive system framework, employing system or model switching, is critical
for ensuring ML system adaptability in dynamic environments. This technique
dynamically transitions between models/systems to maintain optimal perfor-
mance, safety, and quality under varying circumstances.

Several studies explore adaptive frameworks. For instance, researchers have
proposed strategies like predictive control with reconfigurable models [4], model
selection using transfer reinforcement learning (RL) in Open IoT [15], anomaly-
aware adaptation via RL for cyber-physical systems [6], and QoS-based switching
to manage performance uncertainties [13].

However, these valuable studies often have limitations. Many frameworks are
constrained to specific environments or predefined scenarios, limiting generaliz-
ability. Some depend on accessible system behaviors, making them unsuitable
for black-box systems. It is very difficult or impossible to determine in which sit-
uation the system behavior will react as desired for many high-performance ML
models used in practice. Furthermore, existing works frequently focus on spe-
cific aspects like efficiency or anomaly detection, often neglecting the complex
interplay with other critical factors such as overall system safety.

Recent research explores Edge AI optimization considering resource con-
straints [20] and novel cloud-edge collaborative architectures [10]. Yet, these
often do not directly tackle the specific challenge of dynamically adapting black-
box ML models for safety-critical autonomous driving systems. Our work aims
to bridge this gap by proposing a framework integrating adaptive black-box ML
switching within a structured Edge-Cloud approach tailored for ADS safety and
efficiency.

3 Adaptive ML-Enabled Edge-Cloud System Framework

Our framework utilizes an Edge-Cloud architecture comprising two main phases:
a pre-runtime phase executed on cloud resources and a runtime phase operat-
ing across edge and cloud infrastructure. This section first discusses the overall
approach, followed by detailed examinations of the pre-runtime and runtime
phases.
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Fig. 1. Overall Adaptive ML-Enabled Edge-Cloud System Framework

Figure 1 illustrates the framework’s flow, divided into two phases. The lower
section depicts the cloud-based pre-runtime phase, which involves simulation-
based testing, behavioral analysis, and scenario-system mapping to prepare the
system knowledge base. This phase evaluates candidate ML systems through
extensive simulation, analyzes their behavior to identify optimal operating sub-
spaces, and maps the most suitable system to each subspace within the knowl-
edge base, leveraging cloud computational power.

The upper section shows the runtime phase, based on the distributed MAPE-
K loop [12], a standard model for self-adaptive systems. The edge monitors the
environment (Monitor); edge and cloud collaboratively identify the current sce-
nario subspace (Analyze); they collaboratively select the optimal ML system
using the knowledge base (Plan); and the edge executes the system switch (Ex-
ecute). This combination of cloud pre-runtime preparation and distributed run-
time adaptation enables stable and effective adaptation in complex environ-
ments.

In this framework, a ‘Scenario’ represents the specific operational context,
often captured as a vector encompassing environmental factors such as weather
and road type, system goals like waypoints, and current system state variables
including speed and position. We assume multiple ML systems exist, each op-
timized for different scenarios or data distributions. The primary goal of the
pre-runtime phase is to analyze system behavior across diverse scenarios via
large-scale simulations, identify the scenarios best suited for each system’s op-
eration, and systematically compile this information into a knowledge base that
informs runtime decision-making.
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3.1 Pre-Runtime Phase

Executed on the cloud due to computational demands, the pre-runtime phase in-
cludes three key steps: simulation-based testing, behavioral analysis, and scenario-
system mapping.

Simulation-based Testing First, we evaluate ML system performance using
extensive simulations (e.g., using CARLA) across diverse environments. These
scenarios, encompassing complexities like varying weather, road networks, and
traffic in ADS contexts, enable the collection of performance data for each ML
system. Scenario generation prioritizes diversity to cover a broad spectrum of
operating conditions, grounding the identification of suitable operating scenarios
for each system.

Simulation-based testing is crucial for evaluating ML systems, especially
when real-world testing is risky or infeasible. It allows systematic performance
evaluation under diverse, controlled conditions. Platforms like CARLA [21] offer
realistic physics-based simulations suitable for analyzing safety and efficiency
metrics in autonomous systems like Autonomous Driving Systems (ADSs). The
scale and computational demands of such simulations are well-suited for cloud
execution. Simulation testing characterizes ML system performance. Prior work
includes surrogate model-based frameworks [8] and search-based approaches to
identify hazard boundaries [19], demonstrating simulation’s ability to define op-
erational limits. In our framework, simulation testing is a key component of the
cloud-based pre-runtime phase.

Behavioral Analysis Next, each ML system’s behavior is analyzed using the
simulation data, focusing on safety and efficiency. For ADSs, safety metrics might
include detailed collision types, involving pedestrians or vehicles for example, off-
road excursions, route completion ratio, and compliance with traffic regulations
such as traffic signal adherence and stop sign compliance. Efficiency metrics
cover computational cost, like average inference time per frame or peak memory
usage, and network resource consumption required by each ML system. This
analysis assesses whether systems meet safety requirements and satisfy QoS cri-
teria within different scenario subspaces.

Scenario-System Mapping This mapping step is crucial because different
ML systems exhibit varying performance trade-offs, notably between safety and
efficiency, under different scenarios. Based on the behavioral analysis, this step
systematically assigns the best-performing system to each identified scenario sub-
space according to pre-defined objectives, for instance prioritizing safety over
efficiency, creating a reliable decision guide known as the knowledge base for
the runtime phase. This involves cloud-based multi-objective optimization, po-
tentially using evolutionary algorithms or rule-based heuristics. The resulting
mapping is stored in the knowledge base, possibly as a compact decision tree or
a hash map for efficient runtime lookup, and potentially cached at the edge for
runtime access, directly enabling the system’s adaptive capabilities.
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3.2 Runtime Phase

The runtime phase operates using the distributed MAPE-K (Monitor, Analyze,
Plan, Execute, Knowledge) loop across edge and cloud resources. We assume
the edge device is equipped with necessary sensors. Each step leverages edge
and cloud strengths to maintain safety and efficiency in complex environments.

Environmental Observation The runtime process begins with observing the
environment in real-time using onboard edge sensors (e.g., cameras, LiDAR,
radar). This collected data forms the input for the subsequent analysis step.

Scenario Identification Following observation, the current scenario subspace
is determined using the observed edge data. A scenario involves initial envi-
ronment/system states and operational goals. Observations identify the current
state and goals, but unobservable variables may lead to multiple possible scenar-
ios, thus forming a scenario subspace. This analysis is performed collaboratively
on edge and cloud. Rapid analysis of immediate sensor data is performed by the
edge device for local context identification, potentially using lightweight con-
volutional neural networks to identify environment, or other cars. The cloud
leverages larger datasets or more powerful models for deeper analysis, perhaps
employing Long Short-Term Memory networks for predicting traffic or access-
ing aggregated complex mobility data, providing broader context or predictions.
The result is an identified scenario subspace incorporating both edge and cloud
perspectives.

Optimal System Selection Based on the identified scenario subspace, the
most suitable ML system is selected by referencing the knowledge base. This
planning step also occurs collaboratively on edge and cloud. A quick selection is
made by the edge using the identified local context and the potentially cached
knowledge base to address immediate needs. A more sophisticated selection or
refinement is performed by the cloud, considering broader goals or complex trade-
offs. This decision can potentially update the edge’s initial plan, for instance,
based on predicted traffic congestion patterns or system-wide energy optimiza-
tion goals. The final decision on the optimal ML system combines edge and cloud
inputs, aiming for optimal safety and efficiency based on both immediate needs
and longer-term objectives.

System Switching Finally, the execution step involves switching to the se-
lected ML system on the edge device. This transition must occur in real-time
with minimal disruption. The execution requires edge technologies capable of
minimizing transition delays and ensuring system stability post-transition. Fur-
thermore, the performance of the newly activated ML system should ideally be
monitored, with results potentially reported to the cloud to refine the knowledge
base for future decision-making improvement.
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4 Investigation

This section presents a preliminary evaluation of the runtime adaptation compo-
nent within our proposed adaptive ML-enabled edge-cloud framework. A simple
prototype adaptive ADS assesses practical applicability, focusing on safety and
efficiency. As discussed in the Introduction, achieving both safety and efficiency
consistently across diverse driving scenarios is a primary challenge for ADSs,
especially considering edge resource constraints and the limitations of static or
existing adaptive approaches. Our proposed framework aims to improve this bal-
ance through adaptive ML switching in an edge-cloud context. Therefore, this
preliminary evaluation focuses on quantifying the potential benefits regarding
these two critical aspects, guided by the following research questions (RQs):

RQ1 (Safety): What advantages does the adaptive ADS offer in terms of
safety compared to conventional ADS, either holistically or in specific scenarios?

RQ2 (Efficiency): What advantages does the adaptive ADS provide in
terms of efficiency compared to conventional ADS?

Experiments ran on Ubuntu 22.04 (Intel Xeon 4215R, 3x RTX A5000 GPUs
24GB, 128GB RAM). The replication kit containing the source code used in this
study is publicly available at [3].

4.1 Experiment Design

We implemented a simple adaptive ADS prototype focusing on runtime adapta-
tion at the simulated edge. The prototype uses CARLA [7], our simulated edge
environment, and Leaderboard benchmarks [2] to evaluate safety and efficiency
across various scenarios. We compared the adaptive mechanism against single
ML systems regarding safety and efficiency at the edge.

CARLA [7] is a widely used open-source ADS simulator providing diverse
maps and dynamic components. We used CARLA datasets, originally from
Transfuser [5] and InterFuser [18] training, for testing. Key test scenarios in-
cluded ‘longest6’, ‘42routes’, ‘town05_short/long’, ‘town06_long’, and ‘town10_short’.
The CARLA Leaderboard [2] executes these scenarios under predefined condi-
tions using modules like scenario runner.

Evaluation focused on safety and efficiency. Safety metrics from the CARLA
Leaderboard included: Route Score, representing the percentage of the route
completed; Penalty Score, reflecting points deducted for incidents where 1 is
perfect; and Composed Score, providing an overall safety measure. We also in-
troduced Scenario Dominance Count, measuring the number of scenarios where
an agent achieved the highest composed score. Efficiency was measured by the
decision time ratio, calculated as CARLA simulation time divided by real-world
time.

The prototype combines Transfuser [5] and the NPC Agent sourced from
the CARLA Leaderboard, simulating edge runtime adaptation. Transfuser is a
complex DNN agent utilizing camera and LiDAR fusion via self-attention; it is
capable of handling challenging scenarios but computationally heavy for con-
tinuous edge execution. The NPC Agent is a simple, computationally efficient
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rule-based baseline suitable for edge resources but limited in complex situa-
tions. The prototype activates Transfuser near intersections, defined as within
50 meters, and uses the NPC Agent otherwise, simulating edge-based scenario
identification and system selection. This logic prioritizes safety with Transfuser
in higher-risk intersections and efficiency with NPC on simpler road segments,
balancing the trade-offs within the edge environment.

The prototype employs a simple rule-based knowledge base, simulating the
output of the envisioned cloud pre-runtime analysis. The underlying principle is
that Transfuser offers higher safety at greater computational cost, while NPC
is efficient but less safe. The mapping reflects this: Transfuser is selected for
high-risk intersections prioritizing safety, and NPC for other roads prioritizing
efficiency. This allows the prototype to dynamically adapt at the edge, balancing
safety and efficiency based on simple scenario detection.

4.2 Experiment Result

We evaluated the adaptive ADS prototype against the NPC and Transfuser ADS
to address RQ1 (Safety) and RQ2 (Efficiency).

Table 1. Safety and Efficiency Metrics for ADS Systems

Scenarios NPC Transfuser Adaptive

Route Penalty Composed Dominance Time Route Penalty Composed Dominance Time Route Penalty Composed Dominance Time

longest6 39.8 0.237 5.4 1 0.157 42.7 0.799 24.4 14 0.094 61.7 0.419 24.4 21 0.110
42routes 75.1 0.315 21.7 0 0.078 85.5 0.901 79.3 23 0.074 69.4 0.490 37.6 1 0.074
town05_short 79.6 0.375 27.9 2 0.129 97.0 0.877 85.5 29 0.101 93.4 0.856 80.8 1 0.104
town05_long 63.2 0.136 5.1 0 0.133 100.0 0.459 45.9 9 0.098 92.5 0.330 30.2 1 0.119
town06_long 66.0 0.088 1.6 0 0.174 94.5 0.613 56.8 9 0.103 92.5 0.177 16.6 1 0.106
town10_short 31.2 0.406 18.0 0 0.098 100.0 0.810 81.0 8 0.069 83.7 0.653 58.9 1 0.074

Regarding RQ1 (Safety), Table 1 and Figure 2 present the safety and ef-
ficiency results. Transfuser consistently achieved the highest composed scores,
while NPC performed poorly, highlighting the inherent trade-off between per-
formance and computational simplicity relevant to edge suitability. Although the
adaptive ADS often scored below the pure Transfuser, it demonstrated robust-
ness. Notably, it matched Transfuser’s composed score in the ’longest6’ scenario
and achieved the highest score, indicating dominance, in 21 scenarios overall
according to Table 1. This result suggests that, concerning RQ1, the potential
effectiveness of edge-based adaptation. However, lower scores in specific sce-
narios, such as ‘town06_long,’ indicate limitations of the prototype’s simple
adaptation rule, pointing to the need for refinement through the full edge-cloud
framework involving, for example, more sophisticated scenario identification or
a richer knowledge base.

In relation to RQ2 (Efficiency), Figure 3 illustrates computational efficiency
via time ratios. Transfuser’s consistently low time ratio signifies high computa-
tional cost, potentially problematic for resource-constrained edge devices. Con-
versely, NPC was the most efficient but demonstrated poor safety performance.
The adaptive ADS achieved intermediate efficiency. This result indicates that,
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Fig. 2. Comparison of Composed Score for ADS Systems

concerning RQ2, the adaptive approach successfully balanced safety needs with
edge resource usage by selectively engaging the computationally heavier Trans-
fuser only when necessary, thus demonstrating a clear efficiency advantage over
running Transfuser continuously.

In summary, addressing RQ1 and RQ2, these preliminary results suggest that
edge-based adaptation, as demonstrated by the prototype, can offer safety per-
formance comparable to the best-performing single model (Transfuser) in specific
scenarios while achieving significantly greater computational efficiency suitable
for edge deployment. This indicates the potential of the edge adaptation com-
ponent within our broader edge-cloud framework to address the core challenge
of balancing safety and efficiency. However, the observed limitations underscore
the need for future work focusing on the complete framework implementation,
including cloud-based pre-runtime analysis and more sophisticated edge-cloud
coordination mechanisms to improve the adaptation strategy and achieve ro-
bust performance across a wider range of scenarios.

5 Discussion

5.1 Investigation Analysis

Our preliminary evaluation indicates the framework’s edge runtime adaptation
component can potentially balance safety and efficiency across diverse scenarios.
The adaptive prototype outperformed monolithic systems by dominance count in
some scenarios (Table 1) and matched Transfuser’s safety score in ‘longest6’ while
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Fig. 3. Comparison of Time Ratio for ADS Systems

being more computationally efficient (Figure 3). This suggests dynamic edge
switching, guided by scenario perception, is a promising approach for adapting
ADS performance under varying edge conditions.

However, the experiments also revealed limitations, emphasizing the impor-
tance of cloud-based pre-runtime analysis and careful component selection for
edge execution. The NPC Agent’s struggles with unexpected events (e.g., pedes-
trians, obstacles) negatively impacted safety when it was selected by the simple
edge adaptation logic in non-intersection scenarios. This issue stems from the
NPC’s design as a simple rule-based algorithm, highlighting the challenge of
relying solely on simple edge models for complex, unforeseen events and under-
scoring the need for robust cloud-based pre-analysis to identify such weaknesses
or provide mechanisms for escalating to more capable models or cloud interven-
tion.

Similarly, Transfuser’s occasional safety failures in certain intersection sce-
narios, despite high overall scores, demonstrate that the adaptive system’s per-
formance is ultimately bounded by the capabilities and potential flaws of the
underlying models deployed at the edge. While edge switching can optimize
system selection based on known characteristics derived from pre-analysis, it in-
herits the drawbacks of its constituent systems if the cloud pre-runtime analysis
fails to adequately characterize these limitations or if the edge cannot reliably
detect the critical conditions requiring a specific model.

Consequently, these observed limitations underscore the critical role of the
cloud-based pre-runtime phase, involving extensive simulation-based testing and
behavioral analysis, in building a comprehensive and accurate knowledge base.
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This knowledge base is essential for informing effective edge runtime adapta-
tion logic, enabling accurate mapping of scenarios to the most suitable edge-
executable systems, and understanding the operational boundaries and limita-
tions of each component. Therefore, while this study validates the potential of
the edge-based adaptive approach, it simultaneously highlights the critical need
for thorough cloud-based pre-analysis as an indispensable element for optimizing
both safety and efficiency in the design of adaptive edge-cloud ADS systems.

5.2 Future Directions

To overcome the limitations identified and fully realize the framework’s potential,
future work should first address robust scenario generation techniques for the
cloud pre-runtime analysis. Simulation scenarios are critical for evaluating the
performance and identifying the limitations of candidate ADS models intended
for edge deployment. Cloud-based scenario generation methods should system-
atically explore the operational boundaries of these models by designing diverse
scenarios including edge cases, such as unexpected obstacles or highly complex
intersections. These methods need to balance criticality (exploring key bound-
ary conditions) and variety (covering diverse environments), while enabling au-
tomation to reduce the time and cost associated with building the pre-runtime
knowledge base.

Second, mapping scenarios to optimal system behaviors and identifying the
scenario subspaces where specific edge models excel or fail remain significant
challenges, primarily addressed within the cloud component during pre-runtime
analysis. Addressing these requires advanced techniques. Exploration-based tech-
niques can automatically identify critical scenarios within cloud simulations, ef-
ficiently pinpointing model weaknesses. Reinforcement learning is well-suited for
training adaptive switching policies governing edge behavior, allowing the edge
component to learn and respond effectively based on cloud-derived models or
policies.

Furthermore, effective collaboration mechanisms between the edge and the
cloud require in-depth research. Defining clear criteria for when scenario analysis
should be handled solely by the edge versus requiring cloud interaction is a key
challenge in designing the collaboration logic. This includes designing efficient
communication protocols, maintaining data consistency, managing potential con-
flicts between edge and cloud decisions, and developing strategies for dynamic
task allocation and resource management considering real-time requirements,
communication constraints, and computational loads at both edge and cloud.

Future research will prioritize integrating comprehensive cloud-based behav-
ioral analysis with sophisticated self-adaptive techniques executed at the edge,
ensuring effective edge-cloud collaboration. Such efforts aim to maximize the
safety and efficiency of autonomous driving systems by leveraging the strengths
of both edge and cloud resources, while ensuring reliable performance in complex
environments. Ultimately, advancing edge-cloud adaptive frameworks is expected
to improve the feasibility of autonomous driving technologies for commercializa-
tion and play a critical role in developing safe and efficient autonomous systems.
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6 Conclusion

We proposed an adaptive ML-enabled Edge-Cloud framework to enhance au-
tonomous system safety and efficiency. It combines cloud pre-runtime analysis
with collaborative edge-cloud runtime adaptation (including ML switching) to
handle diverse requirements. Preliminary CARLA evaluation validated the edge
adaptation component’s effectiveness. The experimental results demonstrated
that the proposed framework, through edge adaptation potentially improved
trade-off between safety and efficiency compared to conventional single ML sys-
tem approaches in certain scenarios.

A simplified prototype confirmed the edge adaptation’s applicability and
highlighted future work: improving test scenario generation for cloud analysis,
developing robust scenario-system mapping (e.g., using search or RL), and refin-
ing edge-cloud collaboration. Implementing and evaluating the complete frame-
work is the crucial next step.
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