
Anomaly-Aware Adaptation Approach for
Self-Adaptive Cyber-Physical System of Systems

Using Reinforcement Learning
Eunho Cho, Gwangoo Yeo, Eunkyoung Jee, and Doo-Hwan Bae

School of Computing
Korea Advanced Institute of Science and Technology (KAIST)

Daejeon, Republic of Korea
ehcho@kaist.ac.kr, gwangoo525@kaist.ac.kr, ekjee@se.kaist.ac.kr, bae@se.kaist.ac.kr

Abstract—A cyber-physical system of systems (CPSoS) is a
system composed of multiple constituent systems that interact
with both physical and cyber environments. Self-adaptivity is
essential for CPSoS because it works on both cyber and phys-
ical uncertainties in various environments. Main obstacles to
achieving self-adaptive CPSoS are time constraints and system
anomalies. An adaptation should be processed within a certain
period and it should consider anomalies caused by system
changes due to mechanical faults, cyber-attacks, or emergent
behaviors. However, since existing adaptation approaches cannot
fully handle both aspects, this paper proposes an advanced
approach, A4, for a self-adaptive system that can handle known
anomalies in runtime. This approach learns the known anomalies
before runtime and mitigates their impact when they are detected.
We evaluated the A4 approach for virtual and physical CPSoS
and showed that A4 was more efficient than other approaches.

Index Terms—cyber-physical system, system of systems, self-
adaptive system, system anomaly, reinforcement learning, trans-
fer learning

I. INTRODUCTION

A cyber-physical system of systems (CPSoS) comprises
multiple constituent systems that interact with physical and
cyber environments. With the introduction of modern software
technologies, such as IoT, the concept of CPSoS became a
reality for making connections between the physical and cyber
environment in complex system of systems. However, those
connections induce the system to face the various and complex
environments that CPSoS must deal with [1]. Thus, without a
proper strategy for mitigating the various uncertainties of those
environments, it is almost impossible to design software that
achieves system goal reliability and safety for every possible
environment [2].

Self-adaptation is considered essential for reducing effort
and improving the system reliability in CPSoS [3]. A self-
adaptive system engineering is an approach that enables the
behavior and structure to be reorganized to achieve system
goals at runtime in response to changing environments. Var-
ious adaptation approaches exist for the self-adaptive sys-
tems, one of which uses model checking (MC) techniques
to verify whether adaptation tactics meet system goals [4].
These approaches compose a formal model, for example, a
Markov decision process, and verify the model with properties

based on system goals. Another adaptation approach based
on reinforcement learning (RL) makes adaptation decisions
based on knowledge learned offline or online [5]. Rewards are
configured according to system goals, and the RL model trains
offline and online to understand the system’s behavior and
environment. Furthermore, based on learning about the system
and environment, the model selects an appropriate adaptation
tactic for a given state of the system and environment.

Unfortunately, there are two obstacles to achieving self-
adaptation in CPSoS that existing approaches cannot fully
handle. The first is time constraints. A CPS should adapt to an
environmental change within a certain period. For example, the
traffic light system that adapts the duration of the traffic light
based on the number of cars has to adapt within a few seconds
before the traffic light cycle begins. MC-based approaches in-
volve high time or memory costs for verifying whole systems.
For complex systems like CPSoS, the complete adaptation
process may fail under limited time and memory constraints.
Despite statistical MC costing less than probabilistic MC, it
nevertheless takes a long time to verify tactics [4]. Another
challenge for CPSoS is anomalies. An anomaly can be de-
fined as an irregularly happening undesirable event caused by
internal/external CPSoS factors. System changes often cause
CPSoS anomalies due to mechanical failures, cyberattacks [6],
or emergent behaviors, which can be discovered in a system-
of-systems [7]. RL-based approaches are not be able to handle
or hardly handle this problem.

We propose an anomaly-aware adaptation approach, A4.
The A4 learns the environment and system based on the
RL technology and prepares the anomaly-aware tactic plan-
ner based on the transfer learning method. We provide the
application and evaluation of the proposed A4 approach us-
ing two self-adaptive testbeds, a self-adaptive traffic light,
and a self-adaptive smart warehouse. We evaluated A4 and
other adaptation approaches on cost efficiency, anomaly-aware
effectiveness, and the relationship between the anomaly and
performance. Moreover, it was shown that the A4 was more
efficient than other approaches.

The remainder of this paper is organized as follows. Sec-
tion II describes related work on self-adaptive systems. Sec-

978-1-6654-9623-0/22/$31.00 ©2022 IEEE
7

20
22

 1
7t

h
A

nn
ua

l S
ys

te
m

 o
f S

ys
te

m
s E

ng
in

ee
rin

g
C

on
fe

re
nc

e
(S

O
SE

) |
 9

78
-1

-6
65

4-
96

23
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

SO
SE

55
47

2.
20

22
.9

81
26

71

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 02,2022 at 05:37:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overall A4 process

tion III provides details of the A4, and Section IV explains
the evaluation. Section V concludes the paper.

II. RELATED WORK

There have been various existing adaptation approaches that
are able to apply to self-adaptive CPSoS. Stevens et al. [8],
and Shin et al. [4] improved and resolved the complexity of
the MC technique and applied it to a self-adaptive system.
Shin et al. [4] proposed an approach of using statistical model
checking (SMC) instead of probabilistic model checking.
Approaches that improve MC techniques can take advantage of
costs. However, the evaluation of these approaches is limited
to simple self-adaptive systems with a small number of tactics
and no physical components.

Palm et al. [9] utilized the reinforcement learning (RL)
technique to verify the adaptation tactics whether the tactic
meets the system goal. Palm et al. [9] developed a policy-
gradient-based online RL approach for a self-adaptive system
to enable the reaction to the changing environment. RL-
based approaches are common adaptation approaches because
solving a problem with RL techniques resembles finding an
optimal tactic in a self-adaptive system. However, ML models
cannot handle drastic changes and have not yet been proven
to converge on the optimum.

Quin et al. [10] and Cámara et al. [5] used both model
checking and reinforcement learning techniques to ensure both
time constraint and performance. Quin et al. [10] proposed
ML techniques to find appropriate adaptation tactics that were
likely to be optimal. The approaches resembled RL-based
approaches but could only be used for systems with QoS goals
and had the same limitations about anomalies.

III. APPROACH

Figure 1 shows the overall A4 approach, which aims to
select the optimal tactic for a given system state while mit-
igating the effects of potential CPS anomalies. The process
is divided into pre-runtime and runtime phases. Before the
process begins, A4 requires knowledge of target anomalies
and their specifications, anomaly identifiers, historical environ-
mental data, simulatable digital models, adaptation tactics, and
goal specifications. In the pre-runtime phase, a tactic planner is
generated. (Step 1) The generation process requires samples of
the environment based on historical environmental data. (Step

TABLE I: Specifications for an anomaly

Principle
(Anomaly)

Example
Self-adaptive traffic
light system
(Car Accident)

Occurrence
How many components are occurring in the
same anomaly?
How many types does that anomaly have?

Four ways of the in-
tersection

Behavior
Change

How does the system change its behavior?
How does the anomaly disrupt the adapta-
tion goal?

Reduce the outflow
of the intersection

Avg.
Impact

How much does the anomaly affect the
system?

Decrease the out-
flow by 50%

Avg. Dura-
tion

How long does the anomaly affect the
system? 1 hour (360 tick)

Identified
by How can the system identify the anomaly? By cameras, police

report
Identified
after

How long does it take for the system to
identify an anomaly?

After 10 seconds (1
tick)

2) RL generates the tactic planner via a simulatable digital
model and adaptation specifications. (Step 3) The generated
tactic planner helps generate anomaly-specific tactic planners,
which are the tactic planners for anomaly occurrences. By
transferring learning, an anomaly tactic planner can easily be
generated. (Step 4) During runtime, the system monitors the
system and captures the environment. (Step 5) The anomaly
identifier analyzes the system state and detects the anomaly.
(Step 6) The generated tactic planner finds the optimal tactic
for a given system state and identifies anomalies. Steps 4–6
are repeated throughout the complete system runtime.

Historical environmental data are used to learn the system
and environment offline. The A4 approach requires an exe-
cutable system model, i.e., an abstraction of the target cyber-
physical self-adaptive system. The model can be written in
any modeling language, and it can contain any information
that an engineer selects; however, it should be able to carry
out step-by-step execution and extract the system state from
logs. The simulatable model also contains a set of possible
adaptation tactics, and each adaptation tactic can be executed
by reconfiguring the system. The system should adapt to meet
the adaptation goal, and the success can be measured by
adaptation reward based on the system state.

Anomalies in the system are an essential part of the A4

approach. A CPSoS anomaly is an irregularly happening
undesirable event caused by internal/external CPSoS factors.
A4 can target and mitigate the negative impact of known
CPSoS anomalies when an engineer defines the specifications,
as shown in Table I. The engineer should specify the oc-
currence, behavior change, average impact, average duration,
and anomaly identification. Occurrence refers to the types of
anomalies. The same anomaly can occur in different com-
ponents with similar impacts. Behavior changes and impacts
reveal how the system changes due to the anomaly, which
needs to be considered in a simulatable digital model. The
requirement is the identification of anomalies.

(Step 1) A4 constructs virtual environment data based on
the historical environmental data. This data is used for the
environment of the system’s simulatable digital model. The
environment data should be non-deterministic, meaning each

8

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 02,2022 at 05:37:18 UTC from IEEE Xplore. Restrictions apply.

sample should have differences and uncertainties. If the data
are always the same, the tactic planner can be overfitted to the
fixed environment. Time-series forecasting techniques with a
random initial value can help sample the environment, such
as by using CNNs or RNNs [11] or injecting random values
based on a random walk model [12]. Simple methods, such
as injecting random values or selecting the value with normal
distribution, can be effective solutions. The essential factor is
that data should be realistic and non-deterministic. If sufficient
data already exists, this step can be skipped.

(Step 2) A4 generates the tactic planner using RL. Any
RL technique can be used for the generation, such as the
DQN [13] technique. Engineers can select the appropriate
RL method based on the system’s characteristics, adaptation
tactics, adaptation goals, and anomalies. When A4 generates
the tactic planner, the simulatable system model performs the
role of an RL simulation model. Based on the samples, the
system model obtains tactics from the RL model, changes the
system state, gives rewards, and returns the system state to the
model. During this period, the tactic planner does not consider
anomalies.

(Step 3) A4 generates the anomaly tactic planner using
transfer learning. For each anomaly that A4 targets, an
anomaly tactic planner should be generated. The first step
is giving the anomaly information to the simulation. These
anomalies should be specified, and the simulatable digital
model should be able to simulate each anomaly. Then the
anomaly-free tactic planner is imported to initiate the transfer
learning. With the anomaly-free tactic planner, the model
retrains step-by-step based on the simulation results of the
specific anomaly. In this step, the simulation returns the
results for the anomaly, which remains present throughout
the training. Please refer to the thesis [14] for the detailed
algorithm for generating the anomaly-specific tactic planner.

(Step 4) The system is on runtime. It monitors the en-
vironment continuously and detects the need for adaptation.
The environment can be monitored by sensors connected to
the physical parts of the system. The system state is also
monitored. (Step 5) The system detects the anomaly and iden-
tifies it. There are various methods of anomaly identification.
Additional sensors for detecting anomalies or CPS anomaly
detection algorithms can be used for physical anomalies
such as faults due to wear-out. Exceptions, assertions, and
cyberattack protection algorithms are examples of anomaly
identifications for cyber components.

(Step 6) Based on the monitored environment and system
state, the A4 approach decides whether an adaptation is
required or not. For general cases with no anomalies, the
anomaly-free tactic planner plans the adaptation tactic and
finds the optimal tactic for the system. However, if there is
an identified anomaly, the tactic planner is changed to an
anomaly-specific tactic planner trained on the digital model for
a particular anomaly. The selected tactic planner then finds the
optimal tactic based on the given environment and system state
and executes the selected tactic. Please refer to the thesis [14]
for the detailed algorithm.

TABLE II: Descriptions of self-adaptive systems

Testbed Traffic Light (SATLS) Smart Warehouse (SASWS)

Environment Car inflow to the target inter-
section

Received orders into the ware-
house

Anomaly Car accident Jammed item
Occurrence Four routes Two repository devices
Behavior
Change

Reduce the outflow of the in-
tersection Slows the item flow

Avg. Impact Decrease the outflow by 50% Item moves at 25% of normal
speed

Avg. duration
360 ticks (1h)
It does not reoccur until 2h
after it ends.

10 ticks (physical)
100 ticks (simulation)

Identified by Sensors (cameras) and police
reports

Sensors on the repository de-
vice

Identified
after After one adaptation cycle After 1 tick passed

Experiment
Ends After 8,640 ticks (24h) After all the orders are com-

pleted

Rewards Number of cars waiting
Order complete: 30
Item removed: -70
Order waiting: -1

Anomaly
constant 108,000 5 for Physical

30,000,000 for Virtual
E(time b/w
anomalies) 1,426.82 2.87 for Physical

6,838.24 for Virtual
E(# of
anomalies) 3.45 1.55 for Physical

1.44 for Virtual

Fig. 2: Traffic signal pattern for the SATLS

IV. EVALUATION

Three research questions were developed based on the
motivation and goals:

• RQ1: Cost Efficiency. How does A4 handle adaptation
within time constraints?

• RQ2: Adaptation Effectiveness. How does A4 handle
anomalies compared to other approaches?

• RQ3: Relationship between Anomaly and Performance.
How does the adaptation effectiveness of A4 change for
various anomaly occurrence probabilities?

A. Target Self-Adaptive Systems and Anomalies

Two test beds were used for the evaluation, both of which
represented examples of cyber-physical systems. Table II gives
their descriptions and experiment setups.

1) Self-adaptive Traffic Light System (SATLS): A SATLS is
an excellent example of a self-adaptive CPSoS that needs to
be aware of anomalies such as traffic accidents. The flow of
cars changes over time. There may be traffic congestion during
rush hour, and sometimes, there may be a traffic accident that
blocks a route and causes more traffic congestion. According
to historical data, a SATLS predicts the number of cars. Based
on predictions of the future environment, the signal controller
finds the optimal configuration for the traffic light duration
that minimizes the number of waiting cars at an intersection.

This study uses a SATLS as a virtual testbed, which was
implemented in [4]. Figure 2 shows the traffic signal pattern
of the system. One traffic signal cycle comprises 6 component

9

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 02,2022 at 05:37:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of the SASWS

patterns, each of which is assumed to have at least one tick
(in this example, 10s), and the sum of the durations for all
components is assumed to be within 12 ticks (2 mins). In this
configuration, the number of tactics is 462 (

(
11
5

)
). For this

example, the tactic is decided based on the environment at the
start of the cycle, and the decision should be made before the
first pattern ends. Thus, a reasonable time constraint was 10s,
which is the minimum time of the first pattern.

2) Self-adaptive Smart Warehouse System (SASWS): We
implemented virtual and physical SASWS to evaluate A4.
It employs a self-adaptive edge-computing-based system to
reduce the time required to process orders. Figure 3 shows
an overview of such a system. The warehouse contains four
types of items. The classification subsystem classifies the items
based on their type and sends them to the repository subsys-
tem. The repository subsystem holds the items and releases
them when orders are received. The shipment subsystem sends
each item to its destination.

Each subsystem consists of one edge server and one to
three LEGO EV3 devices. Each LEGO EV3 device controls a
conveyor belt and provides temporary storage for items. The
device communicates with the edge server (the raspberry pi)
and follows the direction of the edge server. The edge servers
collect the system state from devices and other edge servers
and decide based on predefined rules. The decision-making
of the edge server depends on the direction of the cloud
server. A virtual customer sends an order to the cloud server,
then examines the environment based on data from the edge
servers and selects adaptations. Each communication is based
on the HTTP API post that the edge or cloud server provides.
The edge and cloud servers were created using the Python
Django REST framework to respond to communications and
log messages and data efficiently.

Adaptation in the SASWS was based on the environment
and orders. Orders were generated based on the rule of
uncertainty. The SASWS could adapt the repository for each
item type; for example, if there are three repositories (e.g., r0,
r1, and r2, respectively), items 0 through 3 would store i0, i1,
i2, and i2 for each. The item can be stopped in the middle of
the conveyor belt due to the uncertainty of the motors. This
‘stuck item’ is assumed as an anomaly of this system. Each
item could pass through the repository subsystem 50s after the
blockage occurred. In this research, only two types of stuck
items were considered target anomalies and stuck on two side
repository devices.

Because the overall reliability of the SASWS’s physical

components was inadequate for evaluating substantial amounts
of orders and items; therefore, the adaptation tactic was
changed to the single-item level. Also, the anomaly was
artificially generated in the system to provide a fair compari-
son. Moreover, the SASWS functions were based on discrete
ticks, meaning that in one tick, the classification subsystem
and shipment subsystem could only serve one item, and the
repository subsystem could only release one item per device.

3) Anomaly Generation: Because the comparison had to be
fair, this research generated the anomaly artificially. The cause
of the CPS anomaly differs, and the anomaly’s distribution also
varies. In this study, the anomaly was assumed to follow the
wear-out failure rate: p = 1− e−t/C . p shows the probability
of an anomaly when the time after the anomaly’s occurrence
is t, and C shows the value that controls the distribution of
the anomaly. Both testbeds used the approximated equation to
artificially create an anomaly based on the given probability.
The SATLS had approximately three or four anomalies for
each simulation to show the anomaly at various times, such
as dawn, morning, afternoon, or night. The SASWS had at
least one anomaly for each experiment.

B. Experimental Design

An SATLS was used for this experiment of RQ1 - cost
efficiency. The same environment (car inflow) and anomaly
(traffic accident) for each adaptation approach evaluation were
given. The system ran for 24h, and it adapts the traffic light
duration for every cycle (120s). The system pauses during the
adaptation planning to measure the adaptation planning time.
The time before and after adaptation was measured, and the
sum of all adaptation planning times constituted the result.
Each approach experiment was repeated 20 times.

Both SATLS and SASWS were for the experiment of RQ2
- anomaly-aware effectiveness. The experimental process for
the SATLS was the same as that mentioned in the experimen-
tal design of RQ1. However, this experiment measured the
rewards for the number of cars waiting at the intersection.

The experiments for the SASWS were based on digital
model simulation and the physical testbed. The same envi-
ronment and anomalies of the SASWS were utilized between
the approaches. Because the time constraint of the system is
short, the RL-based approach and random approach were only
used for comparison. The experiments ended when the system
completed a fixed number of orders. Predefined rewards and
the times until the experiments ended served as results. The
experiments were repeated 20 times for each approach.

The experiment for RQ3 - the relationship between anomaly
and performance concerned the SATLS. Also, only the A4 and
ORL approaches were evaluated. Other experimental designs
were the same as those in the design of RQ1 and 2, but the
number of anomalies changed. For each approach and anomaly
constant, the simulation was run 1,000 times.

We also employed SMC [4], online RL (ORL) [9], and
RL with the SMC method (RL-SMC), inspired by the study
in [10], to compare them with the A4 approach. The RL-SMC
method verifies and selects the tactic that only passes certain

10

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 02,2022 at 05:37:18 UTC from IEEE Xplore. Restrictions apply.

(a) Box plot for the avg. cars (b) Example result

Fig. 4: Evaluation result of SATLS

criteria by the RL model. The SMC verified the tactic and
made the best choice. For the SATLS, all four approaches were
approaches to compare, and for the SASWS, only the RL-
based, A4, ORL, and random approaches were the approaches
to compare. The A4 approach and ORL approach used the
same CNN model with the deep Q-learning algorithm [13] and
the same hyperparameters to train the model. The pretraining
process was also the same as the ORL approach; therefore, the
only difference between the ORL model and the A4 anomaly-
free tactic planner was the online learning process.

C. Results and Analysis

1) RQ1. Cost Efficiency: A4, ORL [9], RL-SMC [10],
and SMC [4] reported 0.584ms, 1.887ms, 25.49s, and 40.30s
for average adaptation time, respectively. The results showed
that the A4 and ORL approaches took less than 1s for the
single adaptation process, while other MC-based approaches
took more than 10s. The RL-SMC approach successfully
reduced the adaptation size, but it took more than 20s to
adapt, violating the time constraints for this testbed. The ORL
approach took slightly longer than the A4 approach because
of the online learning process but did not violate the time
constraint. A4 gave the best results among the approaches.

2) RQ2. Anomaly-Aware Effectiveness: Figure 4a shows
the box plot result for the effectiveness of the SATLS. All
four approaches had 50 to 60 cars waiting on average for
a 24h simulation. In particular, the A4, RL-SMC, and SMC
approaches had comparable results for average reward values
and stable results for every run. Although the RL-based and
A4 approaches have not yet proven convergence, based on
the results for the SATLS, it can be argued that the proposed
approach is competitive with other approaches. The ORL
approach had approximately 60 cars waiting on average, but
it showed a large dispersion and recorded the highest value.
The differences between the other approaches and the ORL
approach were not significant and were mainly caused by
anomalies.

Figure 4b shows a one-run example result for the RQ2
experiment. The red zone shows that the anomalies occurred
at particular times—in this example, three anomalies occurred
at almost 4 a.m., 11 a.m., and 5 p.m. The anomalies did not
affect the performance at 4 a.m. when a few cars passed, but

(a) Simulated SASWS (b) Physical SASWS

Fig. 5: A box plot result for the reward for the SASWS

Fig. 6: Number of cars changes based on the number of
anomalies

they affected the performance of the ORL approach at 11 a.m.
and 5 p.m. The online RL algorithm was good for continuously
adapting the model to the changing system and environment;
however, it required time to collect sufficient data to change.
In this experiment, the RL algorithm could not collect enough
data for online learning (only 30 min). Moreover, the online
RL algorithm had another disadvantage when the anomaly was
resolved—the system changed once more, and the extensive
memory of anomalies damaged the online RL algorithm.

Figure 5a show box plots of the result for the effectiveness
of the simulated SASWS. The performance of the A4 approach
exceeded that of the ORL and random approaches. The ORL
approach had higher rewards than the random approach and
recorded similar values on some runs; however, the average
result was much lower than that of the A4 approach. Never-
theless, the A4 approach shows better performance than other
results.

Based on the results of the simulation sessions, the ex-
periment was conducted in an physical SASWS. Figure 5b
shows the box plot result for the effectiveness of the physical
SASWS. Because the size of the experiment was smaller than
the simulation, the differences between the approaches were
somewhat unclear; however, the A4 constantly recorded high
rewards and short processing times based on the box plot
results, meaning that the A4 approach was influential not only
in the simulation but also in the real world.

3) RQ3. Relationship between Anomaly and Performance:
Figure 6 also shows the change in the number of cars based
on the anomaly. The average number of cars increased for
both approaches as the anomaly frequency increased. The ORL
approach had superior results when no anomaly was present,
but the A4 approach showed that the increased values were not

11

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 02,2022 at 05:37:18 UTC from IEEE Xplore. Restrictions apply.

as high as the ORL approach. The A4 approach showed only a
four-car increase compared to the ORL approach’s increase of
almost 20 cars for seven anomalies. This result showed that the
A4 approach was better than the ORL approach for managing
anomalies and mitigating performance degradation. Moreover,
the A4 approach was able to manage situations regardless of
the number of anomalies.

D. Discussion

One threat to validity was the selection of the A4 RL model.
This research was based on a deep Q-learning algorithm,
action–reward function-based, supporting discrete tactic space.
This algorithm has the limitation of not supporting continuous
tactic space, but this threat was mitigated because many self-
adaptive systems have discrete sets of adaptation tactics. Also,
other RL algorithms could be used instead of deep Q-learning.
Another threat was the fair comparison between the A4 and
baseline approaches, such as online RL or SMC. In this
research, the implementation of baseline approaches followed
the step-by-step guide of approaches of other studies [4], [9],
[10]. Moreover, the complexity, environment, anomalies, and
pre-trained RL models were equally given as the baseline
approaches.

The experiment was conducted on a small CPSoS, and
in this research, an single SATLS and an SASWS were
the experimental subjects. However, the A4 approach can be
applied to any CPSoS with known anomalies. The subjects
were selected to compare approaches using a large number of
experiments; therefore, it was confident that the A4 approach
would show similar experimental results to this evaluation.

One limitation of the research is the difficulty of the A4 ap-
plication. This approach requires diverse types of knowledge,
such as anomaly specifications and anomaly identifiers. It is
almost impossible to know all the anomalies that may affect
the system. Moreover, anomalies in the field have been actively
researched, but appropriate technologies have not yet been
developed. It is also challenging to develop a digital model that
can imitate anomalies. Another limitation is the inefficiency
of anomaly-specific tactic planners. Making a separate tactic
planner is relatively easy when using transfer learning, but if
there are many anomalies and an engineer considers a situation
in which multiple anomalies co-occur, the number of anomaly-
specific tactic planners grows exponentially alongside the state
explosion problem.

V. CONCLUSION

CPSoS faces various changing and evolving environments.
Self-adaptation is the key to achieving the CPSoS goal by
adapting systems’ behavior to changing environments. This
paper proposed A4, an anomaly-aware adaptation approach
to solve both time and anomaly problems. A4 generates
anomaly-specific tactic planners using transfer learning and
plans adaptation when anomalies occur. A4 was shown fast
enough not to violate any testbed time constraints, and its
adaptation performance for various anomalies was proven
using physical testbeds. Future research can aim to solve

the limitations of tactic planners by generating an integrated
anomaly tactic planner and considering an integrated approach
using an anomaly identifier based on deep learning.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information Tech-
nology Research Center) support program(IITP-2022-2020-
0-01795) and (No. 2015-0-00250, (SW Star Lab) Software
R&D for Model-based Analysis and Verification of Higher-
order Large Complex System) supervised by the IITP(Institute
of Information & Communications Technology Planning &
Evaluation).

REFERENCES

[1] F. D. Macı́as-Escrivá, R. Haber, R. Del Toro, and V. Hernandez, “Self-
adaptive systems: A survey of current approaches, research challenges
and applications,” Expert Systems with Applications, vol. 40, no. 18,
pp. 7267–7279, 2013.

[2] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II. Springer, 2013,
pp. 1–32.

[3] M. D’Angelo, A. Napolitano, and M. Caporuscio, “Cyphef: a model-
driven engineering framework for self-adaptive cyber-physical systems,”
in Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, 2018, pp. 101–104.

[4] Y.-J. Shin, E. Cho, and D.-H. Bae, “Pasta: An efficient proactive
adaptation approach based on statistical model checking for self-adaptive
systems,” Fundamental Approaches to Software Engineering, vol. 12649,
p. 292, 2021.

[5] J. Cámara, H. Muccini, and K. Vaidhyanathan, “Quantitative
verification-aided machine learning: A tandem approach for architecting
self-adaptive iot systems,” in 2020 IEEE International Conference on
Software Architecture (ICSA). IEEE, 2020, pp. 11–22.

[6] J. Plasse, J. Noble, and K. Myers, “An adaptive modeling framework for
bivariate data streams with applications to change detection in cyber-
physical systems,” in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW). IEEE, 2017, pp. 1074–1081.

[7] H. Kopetz, A. Bondavalli, F. Brancati, B. Frömel, O. Höftberger, and
S. Iacob, “Emergence in cyber-physical systems-of-systems (cpsoss),”
in Cyber-physical systems of systems. Springer, 2016, pp. 73–96.

[8] C. Stevens and H. Bagheri, “Reducing run-time adaptation space via
analysis of possible utility bounds,” in 2020 IEEE/ACM 42nd Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2020, pp.
1522–1534.

[9] A. Palm, A. Metzger, and K. Pohl, “Online reinforcement learning
for self-adaptive information systems,” in International Conference on
Advanced Information Systems Engineering. Springer, 2020, pp. 169–
184.

[10] F. Quin, D. Weyns, T. Bamelis, S. S. Buttar, and S. Michiels, “Effi-
cient analysis of large adaptation spaces in self-adaptive systems using
machine learning,” in 2019 IEEE/ACM 14th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2019, pp. 1–12.

[11] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a
survey,” Philosophical Transactions of the Royal Society A, vol. 379,
no. 2194, p. 20200209, 2021.

[12] F. Spitzer, Principles of random walk. Springer Science & Business
Media, 2013, vol. 34.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[14] E. Cho, “Anomaly-aware adaptation approach for self-adaptive cyber-
physical system of systems using reinforcement learning,” Master’s
thesis, Korea Advanced Institute of Science and Technology (KAIST),
2022.

12

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 02,2022 at 05:37:18 UTC from IEEE Xplore. Restrictions apply.

